Условие задачи:

На экваторе некоторой планеты тела весят втрое меньше, чем на полюсе. Период обращения этой планеты вокруг своей оси равен 2 ч. Определить среднюю плотность планеты.

Задача №2.5.17 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

\(P_э=\frac{1}{3}P_п\), \(T=2\) ч, \(\rho-?\)

Решение задачи:

Схема к решению задачи "На экваторе некоторой планеты тела весят втрое меньше, чем на полюсе. Период"Тело на экваторе вращается вместе с планетой по окружности радиуса \(R\) (радиус планеты). Применив второй закон Ньютона, получим следующее равенство:

\[mg — {N_э} = m{a_ц}\;\;\;\;(1)\]

Тело на полюсе лежит на оси вращения планеты, поэтому оно вращается лишь вокруг себя. Запишем первый закон Ньютона:

\[mg = {N_п}\;\;\;\;(2)\]

По третьему закону Ньютона сила реакции опоры (\(N_э\) и \(N_п\)) равна весу тела (\(P_э\) и \(P_п\) соответственно). Учтите, что эти силы хоть и равны по величине, но противоположны по направлению и приложены к разным телам. С учетом этого запишем равенства (1) и (2) в такой системе:

\[\left\{ \begin{gathered}
{P_э} = mg — m{a_ц} \hfill \\
{P_п} = mg \hfill \\
\end{gathered} \right.\]

Поделим нижнее равенство на верхнее. Так как \(P_э=\frac{1}{3}P_п\), то получим:

\[\frac{g}{{g — {a_ц}}} = 3\]

\[3g — 3{a_ц} = g\]

\[2g = 3{a_ц}\;\;\;\;(3)\]

Поскольку в задаче нужно узнать среднюю плотность планеты \(\rho\), то запишем такие формулы: во-первых, формулу определения ускорения свободного падения \(g\) на поверхности планеты, во-вторых, формулу определения массы через плотность и объем, в-третьих, формулу определения объема шара.

\[g = G\frac{M}{{{R^2}}}\;\;\;\;(4)\]

\[M = \rho  \cdot V\;\;\;\;(5)\]

\[V = \frac{4}{3}\pi \rho {R^3}\;\;\;\;(6)\]

Подставив (6) в (5), а полученное в (4), получим:

\[g = \frac{4}{3}\pi G\rho R\;\;\;\;(7)\]

Чтобы выразить центростремительное ускорение \(a_ц\) через период вращения планеты \(T\) запишем такие формулы: формулу определения ускорения \(a_ц\) через угловую скорость \(\omega\) и формулу связи последней с периодом вращения \(T\).

\[{a_ц} = {\omega ^2}R\]

\[\omega  = \frac{{2\pi }}{T}\]

В итоге:

\[{a_ц} = \frac{{4{\pi ^2}}}{{{T^2}}}R\;\;\;\;(8)\]

Подставим выражения (7) и (8) в ранее полученное равенство (3):

\[\frac{8}{3}\pi G\rho R = \frac{{12{\pi ^2}}}{{{T^2}}}R\]

\[\rho  = \frac{{9\pi }}{{2G{T^2}}}\]

Переведем данный в условии период вращения \(T\) в систему СИ (в секунды):

\[T = 2\;ч = 2 \cdot 3600 = 7200\; с\]

Посчитаем ответ:

\[\rho  = \frac{{9 \cdot 3,14}}{{2 \cdot 6,67 \cdot {{10}^{ — 11}} \cdot {{7200}^2}}} = 4086,5\; кг/м^3 \approx 4\; г/см^3\]

Ответ: 4 г/см3.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Если Вам понравилась задача и ее решение, то Вы можете поделиться ею с друзьями с помощью этих кнопок.

Комментарии

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>