Условие задачи:
Какова истинная глубина водоема, если камень, лежащий на дне его, при рассматривании по вертикали, кажется находящимся на расстоянии 1,5 м?
Задача №10.3.41 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»
Дано:
\(h=1,5\) м, \(H-?\)
Решение задачи:
Для решения задачи сделаем рисунок. При этом для решения этой задачи нам нужно рассмотреть ход параксиального луча, то есть луча, который распространяется под малым углом к оси OO1. На рисунке углы \(\alpha\) и \(\beta\) не являются малыми, это сделано исключительно для наглядности рисунка.
Запишем закон преломления света (также известен как закон преломления Снеллиуса):
\[{n_2}\sin \alpha = {n_1}\sin \beta\]
Здесь \(\alpha\) и \(\beta\) — угол падения и угол преломления соответственно, \(n_1\) и \(n_2\) — показатели преломления сред. Показатель преломления воздуха \(n_1\) равен 1, показатель преломления воды \(n_2\) равен 1,33.
Так как углы \(\alpha\) и \(\beta\) являются малыми, тогда можно воспользоваться тем, что в таком случае \(\sin \alpha \approx \alpha\) и \(\sin \beta \approx \beta\) (здесь углы, разумеется, выражены в радианах). Тогда:
\[{n_2}\alpha = {n_1}\beta \]
\[\beta = \frac{{{n_2}}}{{{n_1}}}\alpha \;\;\;\;(1)\]
Также из прямоугольных треугольников можно получить следующее:
\[\left\{ \begin{gathered}
tg\alpha = \frac{L}{H} \hfill \\
tg\beta = \frac{L}{h} \hfill \\
\end{gathered} \right.\]
Имеем:
\[\left\{ \begin{gathered}
L = H \cdot tg\alpha \hfill \\
L = h \cdot tg\beta \hfill \\
\end{gathered} \right.\]
\[H \cdot tg\alpha = h \cdot tg\beta \]
Опять же, если углы \(\alpha\) и \(\beta\) являются малыми, тогда можно воспользоваться тем, что в таком случае \(tg \alpha \approx \alpha\) и \(tg \beta \approx \beta\) (здесь углы, разумеется, выражены в радианах).
\[H \cdot \alpha = h \cdot \beta \]
В полученное уравнение подставим выражение (1):
\[H \cdot \alpha = h \cdot \frac{{{n_2}}}{{{n_1}}}\alpha \]
\[H = \frac{{{n_2}}}{{{n_1}}}h\]
Задача решена в общем, подставим данные задачи в полученную формулу и посчитаем численный ответ:
\[H = \frac{{1,33}}{1} \cdot 1,5 = 2\;м\]
Ответ: 2 м.
Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.
Смотрите также задачи:
10.3.40 Какова глубина бассейна, если человек, глядя под углом 30° к поверхности воды
10.3.42 Кажущаяся глубина водоема h=4 м. Определить истинную глубину h0 водоема, если
10.3.43 На расстоянии 1,5 м от поверхности воды в воздухе находится точечный источник света
Здравствуйте! А закон преломления будет не n1sin a=n2 sin b?