Условие задачи:

Гладкий горизонтальный диск вращается вокруг вертикальной оси с частотой 40 об/мин. От поверхности диска на расстоянии половины радиуса от оси отрывается небольшое тело, скользящее по диску без трения. Через какое время предмет соскользнет с диска?

Задача №1.8.32 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

\(\nu=40\) об/мин, \(r=\frac{R}{2}\), \(t-?\)

Решение задачи:

Схема к решению задачиВ момент отрыва тело будет иметь скорость, равную линейной скорости точки диска, на которой оно находилось, то есть:

\[\upsilon  = \omega r\]

Угловую скорость \(\omega\) возможно найти через частоту вращения \(\nu\) диска по формуле:

\[\omega  = 2\pi \nu \]

Так как по условию \(r=\frac{R}{2}\), то скорость тела в момент отрыва определяется выражением:

\[\upsilon  = 2\pi \nu  \cdot \frac{R}{2} = \pi \nu R\]

После отрыва тело движется без трения, значит на него вообще не действуют никакие силы, т.е. по первому закону Ньютона оно будет двигаться равномерно и прямолинейно (от точки 1 до точки 2, смотрите рисунок). Учитывая это и пользуясь рисунком, найдем расстояние, которое пройдет тело до того как покинет диск. По теореме Пифагора:

\[S = \sqrt {{R^2} — {r^2}}  = \sqrt {{R^2} — \frac{{{R^2}}}{4}}  = \frac{{\sqrt 3 R}}{2}\]

Время до отрыва найдем по простой формуле:

\[t = \frac{S}{\upsilon }\]

Подставим в нее выражения для скорости тела и пути.

\[t = \frac{{\sqrt 3 R}}{{2\pi \nu R}} = \frac{{\sqrt 3 }}{{2\pi \nu }}\]

Частоту перед подстановкой в формулу необходимо перевести в систему СИ.

\[40\; об/мин = \frac{{40}}{{60}}\; об/с = \frac{2}{3}\; об/с\]

Численно искомое время равно:

\[t = \frac{{\sqrt 3  \cdot 3}}{{2 \cdot 3,14 \cdot 2}} = 0,41\; с\]

Ответ: 0,41 с.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

1.8.31 Стержень длиной 50 см вращается с частотой 30 об/мин вокруг перпендикулярной
1.8.33 Линейная скорость точки на ободе равномерно вращающегося колеса диаметром
1.8.34 Маховое колесо вращается с угловой скоростью 10 рад/с. Модуль линейной скорости

Пожалуйста, поставьте оценку
( 13 оценок, среднее 4.69 из 5 )
Вы можете поделиться с помощью этих кнопок:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: