Processing math: 100%

Условие задачи:

Тело массой 1 кг, брошенное с вышки в горизонтальном направлении со скоростью 20 м/с, через 3 с упало на землю. Какой кинетической энергией обладало тело в момент удара о землю?

Задача №2.7.34 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

m=1 кг, υ0=20 м/с, t=3 с, Eк?

Решение задачи:

Схема к решению задачиКинетическую энергию тела Eк можно определить по формуле:

Eк=mυ22

Разложим вектор скорости тела перед ударом υ на две взаимно перпендикулярные составляющие υx и υy. По теореме Пифагора:

υ=υ2x+υ2y

Понятно, что υx равна начальной скорости υ0, так как в направлении оси x не действуют никакие силы. Вдоль оси y тело движется равноускоренно с ускорением g, поэтому легко найти значение υy через время t.

{υx=υ0υy=gt

Тогда:

υ=υ20+g2t2υ2=υ20+g2t2

Eк=m(υ20+g2t2)2

Посчитаем ответ:

Eк=1(202+10232)2=650Дж

Ответ: 650 Дж.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

2.7.33 Самолет для взлета должен иметь скорость 25 м/с. Длина пробега перед взлетом 100 м
2.7.35 Тепловоз за 5 мин набирает скорость 72 км/ч. Определить среднюю мощность
2.7.36 Укажите график зависимости потенциальной энергии свободно падающего тела

Пожалуйста, поставьте оценку
( 8 оценок, среднее 4.5 из 5 )
Вы можете поделиться с помощью этих кнопок:
Комментарии: 3
  1. bojik

    Большое спасибо:3

  2. bojik

    Здравствуйте, можно ли в данной задаче как-то найти угол между вектором скорости и поверхностью в момент удара о землю? Заранее спасибо.

    1. Easyfizika (автор)

      Конечно можно, например тангенс указанного Вами угла равен отношению проекции скорости (в момент удара о земли) на ось y υy к проекции на ось x υx:tgα=υyυxИсходя из решения, приведенного выше:tgα=gtυ0Тогда:α=arctg(gtυ0)Численный ответ равен:α=arctg(10320)=56,3

Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: